Répondre :
Bonsoir,
C'est le théorème de la médiane.
Commence par développer la somme (MA +MB)² (en vecteurs).
[tex](\vec{MA}+\vec{MB})^2 &= MA^2+MB^2 + 2\vec{MA}\cdot\vec{MB}\\ &= MA^2+MB^2 + 2(\vec{MI}+\vec{IA})(\vec{MI}+\vec{IB})\\ =MA^2+MB^2 + 2(MI^2 +\vec{MI}\cdot \vec{IA} + \vec{MI}\cdot \vec{IB}+\vec{IA}\cdot \vec{IB})\\ =MA^2+MB^2 + 2MI^2 -\frac 12 AB^2[/tex]
Or tu as aussi (toujours en vecteurs) MA+MB = 2MI. Donc (MA+MB)² = 4MI², donc tu peux en déduire l'égalité à démontrer.
Si tu as des questions, n'hésite pas ! =)
C'est le théorème de la médiane.
Commence par développer la somme (MA +MB)² (en vecteurs).
[tex](\vec{MA}+\vec{MB})^2 &= MA^2+MB^2 + 2\vec{MA}\cdot\vec{MB}\\ &= MA^2+MB^2 + 2(\vec{MI}+\vec{IA})(\vec{MI}+\vec{IB})\\ =MA^2+MB^2 + 2(MI^2 +\vec{MI}\cdot \vec{IA} + \vec{MI}\cdot \vec{IB}+\vec{IA}\cdot \vec{IB})\\ =MA^2+MB^2 + 2MI^2 -\frac 12 AB^2[/tex]
Or tu as aussi (toujours en vecteurs) MA+MB = 2MI. Donc (MA+MB)² = 4MI², donc tu peux en déduire l'égalité à démontrer.
Si tu as des questions, n'hésite pas ! =)
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !