👤

Bonsoir pourriez vous m'expliquez ? Svp
Comment on fait pour facoriser :
(3x-4) (9x+4) - (2x-4)
Merci


Répondre :

(3x-4)(9x+4)-(2x-4) = 27[tex] x^{2} [/tex] +12x-36x-16-2x+4
                                 = 27[tex] x^{2} [/tex] -26x-12
                                  Δ = 676 -4*27*(-12)
                                      = 676 + 1296
                                     = 1972
                                 √Δ = 2[tex] \sqrt{493} [/tex]
x1= 26-2[tex] \sqrt{493} [/tex] / 54 = 13-[tex] \sqrt{493} [/tex] / 27
x2= 13+[tex] \sqrt{493} [/tex] / 27
    

la factorisation :   27(x-13-[tex] \sqrt{493} [/tex] / 27) ( x-13+[tex] \sqrt{493} [/tex] / 27)
 
Bonsoir , 
(3x-4) (9x+4) - (2x-4)
= 27x² + 12x - 36x - 16 - 2x + 4
= 27x² - 26x - 12 .

Δ = b² - 4ac
Δ = (-26)² - 4 × 27 × (-12)
Δ = 676 - (-1296)
Δ = 1972

x₁ = -b+√Δ/2a
x₁ = -(-26) + √1972 / 2× 27
x₁ = 26 + √1972 / 54

x₂ = -b-√Δ / 2a
x₂ = -(-26) - √1972 / 2 × 27
x₂ = 26 - √1972 / 54

S = { (26-√1972)/54 ; (26+√1972)/54 } .


Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


Viz Asking: D'autres questions