Répondre :
Bonjour,
lorsqu'ils seront tous deux en me^me temps sur la ligne de départ , ils auront fait un certain nombre de tours et donc le temps sera un multiple des temps mis par chacun pour faire un tour
3mn18s=(3*60)+18=180+18=198
3mn45=(3*60)+45=180+45=225
198=2*3*3*5*5*11
225=3*3*5*5
le 1er multiple est donc
2*3*3*5*5*11=4950
ils se retrouvent au bout de 4950s
4950/60=82 reste 30 donc 30s
82/60=1 reste 22
donc 1h22mn 30s
lorsqu'ils seront tous deux en me^me temps sur la ligne de départ , ils auront fait un certain nombre de tours et donc le temps sera un multiple des temps mis par chacun pour faire un tour
3mn18s=(3*60)+18=180+18=198
3mn45=(3*60)+45=180+45=225
198=2*3*3*5*5*11
225=3*3*5*5
le 1er multiple est donc
2*3*3*5*5*11=4950
ils se retrouvent au bout de 4950s
4950/60=82 reste 30 donc 30s
82/60=1 reste 22
donc 1h22mn 30s
Bonjour,
3min 18 s=198 s
3 min 45s=225 s
Ils se retrouveront sur la ligne de départ quand le 1er aura fait "x" tours et le second y tours. Ils auront roulé le même temps bien sûr qui est 198*x pour le l'un et 225*y pour l'autre.
On a donc l'égalité :
198x=225y
On cherche le PGCD de 198 et 225 pour simplifier . C'est 9 donc on simplifie par 9.
198/9=22 et 225/9=25
22x=25y
Le plus rapide aura fait 25 tours et l'autre : 22 tours.
Tu cherches le temps mis qui est le même pour les deux.
On doit trouver 1 h 22min 30 s ...sauf erreurs !!
3min 18 s=198 s
3 min 45s=225 s
Ils se retrouveront sur la ligne de départ quand le 1er aura fait "x" tours et le second y tours. Ils auront roulé le même temps bien sûr qui est 198*x pour le l'un et 225*y pour l'autre.
On a donc l'égalité :
198x=225y
On cherche le PGCD de 198 et 225 pour simplifier . C'est 9 donc on simplifie par 9.
198/9=22 et 225/9=25
22x=25y
Le plus rapide aura fait 25 tours et l'autre : 22 tours.
Tu cherches le temps mis qui est le même pour les deux.
On doit trouver 1 h 22min 30 s ...sauf erreurs !!
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !