Bonjour Sulky
[tex]a)\ \lim\limits_{x\to+\infty} (\dfrac{2x + 2}{x - 3})=\lim\limits_{x\to+\infty} (\dfrac{2x}{x})=2\\\\b)\ \lim\limits_{x \to +\infty}(2+\dfrac{6}{x^2})=\lim\limits_{x \to +\infty}2+\lim\limits_{x \to +\infty}(\dfrac{6}{x^2})=2+0=2\\\\c)\ \lim\limits_{x \to-\infty}(-2x^2^5^1})=(-2)\times(-\infty)=+\infty\\\\d)\ \lim\limits_{x \to+\infty}(\dfrac{-5x+1}{x-2})=\lim\limits_{x \to+\infty}(\dfrac{-5x}{x})=-5[/tex]