Répondre :
Bonsoir ^^
Exercice 2/
1) Forfait 1 = 95 centimes/minutes.
On note la fonction f(x) = 95x. Prix obtenus en centimes
Forfait 2 = Appels illimité pour 20 euros.
On note g(x) = 20
Forfait 3 = 0.005x^2 + 1
Donc on note h(x) = 0.005x + 1
2) Pour 0 = 1 euros
Pour 5 = 100 + 125 = 225 = centimes
Pour 10 = 100 + 500 = 600 centimes
Pour 15 = 100 + 1125 = 1225 centimes
Pour 20 = 100 + 2000 = 2100 centimes
Pour 25 = 100 + 3125 = 3225 centimes
Je ne peux faire te donner le graphique.
4/ Après avoir tracer les courbes, trace la droite parallèle a l'axe des abscisses qui coupe l'axe des ordonnées en 10, puis 20. Celle qui est le plus proche de 0 est le plus rentable.
Sinon, par le calcul :
f(10) = 950 centimes f(20) = 1900 centimes
g(10) = 2000 centimes ; g(20) = 2000 centimes
h(10) = 600 centimes ; h(20) = 2100 centimes
Donc pour 10 minute,le forfait 3 est plus intéressant. Pour 20 minutes, c'est le forfait 1/
3/ pour 22 minutes, car à 22 minutes, le forfait 1 sera plus élevé (de 190 centimes) que le forfait 2.
Exercice 2/
1) Forfait 1 = 95 centimes/minutes.
On note la fonction f(x) = 95x. Prix obtenus en centimes
Forfait 2 = Appels illimité pour 20 euros.
On note g(x) = 20
Forfait 3 = 0.005x^2 + 1
Donc on note h(x) = 0.005x + 1
2) Pour 0 = 1 euros
Pour 5 = 100 + 125 = 225 = centimes
Pour 10 = 100 + 500 = 600 centimes
Pour 15 = 100 + 1125 = 1225 centimes
Pour 20 = 100 + 2000 = 2100 centimes
Pour 25 = 100 + 3125 = 3225 centimes
Je ne peux faire te donner le graphique.
4/ Après avoir tracer les courbes, trace la droite parallèle a l'axe des abscisses qui coupe l'axe des ordonnées en 10, puis 20. Celle qui est le plus proche de 0 est le plus rentable.
Sinon, par le calcul :
f(10) = 950 centimes f(20) = 1900 centimes
g(10) = 2000 centimes ; g(20) = 2000 centimes
h(10) = 600 centimes ; h(20) = 2100 centimes
Donc pour 10 minute,le forfait 3 est plus intéressant. Pour 20 minutes, c'est le forfait 1/
3/ pour 22 minutes, car à 22 minutes, le forfait 1 sera plus élevé (de 190 centimes) que le forfait 2.
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !