Répondre :
Bonjour,
A) (x-½)²-25/4 = x²-x+¼-25/4 = x²-x-24/4 = x²-x-6
B) (x-½)²-25/4 = (x-½)²-(5/2)² = (x-½-5/2)(x-½+5/2) = (x-3)(x-2)
Donc x²-x-6 = (x-3)(x+2)
C) x²-x-6 = 0
(x-3)(x+2) = 0 une equation produit nul
soit x-3 = 0 donc x = 3
soit x+2 = 0 donc x = -2
Les solutions sont S{-2;3}.
A) (x-½)²-25/4 = x²-x+¼-25/4 = x²-x-24/4 = x²-x-6
B) (x-½)²-25/4 = (x-½)²-(5/2)² = (x-½-5/2)(x-½+5/2) = (x-3)(x-2)
Donc x²-x-6 = (x-3)(x+2)
C) x²-x-6 = 0
(x-3)(x+2) = 0 une equation produit nul
soit x-3 = 0 donc x = 3
soit x+2 = 0 donc x = -2
Les solutions sont S{-2;3}.
Bonjour ;
On a x²-x-6=x²-2*1/2*x+(1/2)²-(1/2)²-6 : on ajouté et retanché (1/2)²
pour faire apparaître l'identité
remarquable .
= (x²-2*1/2*x+(1/2)²) -1/4-6
= (x-1/2)² - 25/4
= (x-3)(x+2)
donc x²-x-6=0 est équivalente à (x-3)(x+2)=0
donc x-3=0 ou x+2=0
donc x=3 ou x-2=0 .
Une autre démarche .
On a : -x=2x-3x
donc : x²-x-6=x²+2x-3x-6=x(x+2)-3(x+2)=(x-3)(x+2)=0
donc x²-x-6=0 pour x-3=0 ou x+2=0
donc x=3 ou x=-2 .
On a x²-x-6=x²-2*1/2*x+(1/2)²-(1/2)²-6 : on ajouté et retanché (1/2)²
pour faire apparaître l'identité
remarquable .
= (x²-2*1/2*x+(1/2)²) -1/4-6
= (x-1/2)² - 25/4
= (x-3)(x+2)
donc x²-x-6=0 est équivalente à (x-3)(x+2)=0
donc x-3=0 ou x+2=0
donc x=3 ou x-2=0 .
Une autre démarche .
On a : -x=2x-3x
donc : x²-x-6=x²+2x-3x-6=x(x+2)-3(x+2)=(x-3)(x+2)=0
donc x²-x-6=0 pour x-3=0 ou x+2=0
donc x=3 ou x=-2 .
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !