Bonjour !
2. C'est à cause de la vitesse de la comète. Je te laisse calculer l'intensité de la force d'interaction gravitationnelle entre la comète et le Soleil avec la formule de ton cours et les données du chapeau.
3. Pour ça utilise la chronophotographie, chacun des segments correspond à un intervalle de 1h. Il y en a 7 en tout, donc la sonde a parcouru la distance que je n'arrive pas à lire sur la photo en 7 heures, d'où la vitesse moyenne.
4. Les informations se propagent à la vitesse de la lumière et mettent 28 minutes à arriver. Déduis en la distance entre la Terre et la comète.
5. Déjà tu peux voir que la vitesse moyenne d'approche est beaucoup plus faible que sur Terre (de l'ordre de 200 km/h), ce qui est expliqué en partie à la question suivante...
6. Pour cela il faut calculer la valeur de g sur la comète. Normalement tu as vu dans ton cours que pour la Terre, en première approximation,
[tex]g =\frac{\mathcal G M_T }{R_T^2}[/tex]
Je te laisse adapter cette formule à la comète.
7. Pour cela tu peux utiliser le résultat précédent pour calculer le poids de la sonde sur la comète et en déduire la masse d'un objet de même poids sur Terre. Cela te permet de conclure.
Si tu as des questions, n'hésite pas ! =)