Bonjour,
cos(2a) = cos²(a) - sin²(a) = 1 - 2sin²(a) = 2cos²(a) - 1
Donc cos(2x7π/8) = 2cos²(7π/8) - 1
Soit cos(7π/4) = 2cos²(7π/8) - 1
Or cos(7π/4) = √(2)/2
Donc : 2cos²(7π/8) - 1 = √(2)/2
⇔ cos²(7π/8) = [√(2)/2 + 1]/2
7π/8 ∈ [π/2;π] ⇒ cos(7π/8) < 0
Donc cos(7π/8) = - √[(√(2)/2 + 1)/2] = - √[(√(2) + 2)]/2