Répondre :
bonjour,
1) x(x-1)+2x-2=(x+3)(x-1)
x(x-1)+2x-2-(x+3)(x-1) =0
x(x-1)+2(x-1)-(x+3)(x-1) = 0
(x-1)(x+2-x-3) = 0
(x-1)(-1) = 0
-1(x-1) = 0
x = 1
2) (x+3)(2x-1)-4x² +1=0
(x+3)(2x-1)-(2x-1)(2x+1) =0
(2x-1)(x+3-2x-1)= 0
(2x-1)(-x+2)
2x-1 = 0
2x =1
x =-1/2
-x+2 = 0
-x =-2
x = 2
3) (x-4)(x+1)-(x+7)(x-3)=-7x+17
(x²+x-4x-4)-(x²-3x+7x-21) = -7x+17
x²-3x-4-x²+3x-7x+21 = -7x+17
-7x+17 = -7x+17
1) x(x-1)+2x-2=(x+3)(x-1)
x(x-1)+2x-2-(x+3)(x-1) =0
x(x-1)+2(x-1)-(x+3)(x-1) = 0
(x-1)(x+2-x-3) = 0
(x-1)(-1) = 0
-1(x-1) = 0
x = 1
2) (x+3)(2x-1)-4x² +1=0
(x+3)(2x-1)-(2x-1)(2x+1) =0
(2x-1)(x+3-2x-1)= 0
(2x-1)(-x+2)
2x-1 = 0
2x =1
x =-1/2
-x+2 = 0
-x =-2
x = 2
3) (x-4)(x+1)-(x+7)(x-3)=-7x+17
(x²+x-4x-4)-(x²-3x+7x-21) = -7x+17
x²-3x-4-x²+3x-7x+21 = -7x+17
-7x+17 = -7x+17
1) x(x - 1) + 2x - 2 = (x + 3)(x - 1)
x(x - 1) + 2(x - 1) - (x + 3)(x - 1) = 0
(x - 1)(x + 2 - x - 3) = 0
(x - 1)(-1) = 0
-x + 1 = 0
x = -1
2) (x + 3)(2x - 1) - 4x^2 + 1 = 0
(x + 3)(2x - 1) + (1)^2 - (2x)^2 = 0
(x + 3)(2x - 1) + (1 - 2x)(1 + 2x) = 0
(x + 3)(2x - 1) - (2x - 1)(1 + 2x) = 0
(2x - 1)(x + 3 - 1 - 2x) = 0
(2x - 1)(-x + 2) = 0
2x - 1 = 0
2x = 1
x = 1/2
Ou
-x + 2 = 0
x = 2
3) (x - 4)(x + 1) - (x + 7)(x - 3) = -7x + 17
(x - 4)(x + 1) - (x + 7)(x - 3) + 7x - 17 = 0
x^2+x-4x-4 - (x^2-3x+7x-21) + 7x - 17 = 0
x^2-x^2 - 3x-4x+7x - 4+21-17 = 0
0 = 0
Quelque soit la valeur de x on aura toujours 0 = 0
x(x - 1) + 2(x - 1) - (x + 3)(x - 1) = 0
(x - 1)(x + 2 - x - 3) = 0
(x - 1)(-1) = 0
-x + 1 = 0
x = -1
2) (x + 3)(2x - 1) - 4x^2 + 1 = 0
(x + 3)(2x - 1) + (1)^2 - (2x)^2 = 0
(x + 3)(2x - 1) + (1 - 2x)(1 + 2x) = 0
(x + 3)(2x - 1) - (2x - 1)(1 + 2x) = 0
(2x - 1)(x + 3 - 1 - 2x) = 0
(2x - 1)(-x + 2) = 0
2x - 1 = 0
2x = 1
x = 1/2
Ou
-x + 2 = 0
x = 2
3) (x - 4)(x + 1) - (x + 7)(x - 3) = -7x + 17
(x - 4)(x + 1) - (x + 7)(x - 3) + 7x - 17 = 0
x^2+x-4x-4 - (x^2-3x+7x-21) + 7x - 17 = 0
x^2-x^2 - 3x-4x+7x - 4+21-17 = 0
0 = 0
Quelque soit la valeur de x on aura toujours 0 = 0
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !