Répondre :
Bonjour,
1)
a) On nous dit que le point M est distinct de A et B, donc le point ne peut pas se situé à 0 ou 3 de A . Donc a ∈ ]0;3[ . (a appartient à l'intervalle ]0;3[ )
b) AMD est un triangle rectangle en A.
Aire d'un triangle rectangle=[tex] \frac{Base*Hauteur}{2} \\ \\ \\ [/tex]
AD=BC
Aire de AMD = [tex] \frac{AM*AD}{2}= \frac{a*4}{2}= \frac{4a}{2}= \frac{4}{2}*a=2a [/tex]
c)
Rappel: Aire d'un rectangle : longueur × largeur
Aire de BCDM=Aire de ABCD - Aire de AMD
Aire de BCDM= AD×AB - 2a
Aire de BCDM= 4×3 - 2a
Aire de BCDM= 12 -2a
Aire de BCDM=-2a + 12
2)
a)
b est la longueur MB.
b)
b ∈ ]0;3[
c)
On commence par calculer l'aire de AMD en fonction de b:
Aire de AMD= [tex] \frac{AD*AM}{2}= \frac{4*(3-b)}{2}= \frac{12-4b}{2}= \frac{12}{2} -\frac{4b}{2}=6-2b [/tex]
Aire de BCDM=Aire de ABCD - Aire de AMD
Aire de BCDM=AD×AB - 6 - 2b
Aire de BCDM=4×3 - 6 - 2b
Aire de BCDM= 12 -6 -2b
Aire de BCDM= 6-2b
Aire de BCDM= -2b +6
J'ai essayé de détaillé le plus possible dans les calculs, je te souhaite bon courage pour la suite ^_^
1)
a) On nous dit que le point M est distinct de A et B, donc le point ne peut pas se situé à 0 ou 3 de A . Donc a ∈ ]0;3[ . (a appartient à l'intervalle ]0;3[ )
b) AMD est un triangle rectangle en A.
Aire d'un triangle rectangle=[tex] \frac{Base*Hauteur}{2} \\ \\ \\ [/tex]
AD=BC
Aire de AMD = [tex] \frac{AM*AD}{2}= \frac{a*4}{2}= \frac{4a}{2}= \frac{4}{2}*a=2a [/tex]
c)
Rappel: Aire d'un rectangle : longueur × largeur
Aire de BCDM=Aire de ABCD - Aire de AMD
Aire de BCDM= AD×AB - 2a
Aire de BCDM= 4×3 - 2a
Aire de BCDM= 12 -2a
Aire de BCDM=-2a + 12
2)
a)
b est la longueur MB.
b)
b ∈ ]0;3[
c)
On commence par calculer l'aire de AMD en fonction de b:
Aire de AMD= [tex] \frac{AD*AM}{2}= \frac{4*(3-b)}{2}= \frac{12-4b}{2}= \frac{12}{2} -\frac{4b}{2}=6-2b [/tex]
Aire de BCDM=Aire de ABCD - Aire de AMD
Aire de BCDM=AD×AB - 6 - 2b
Aire de BCDM=4×3 - 6 - 2b
Aire de BCDM= 12 -6 -2b
Aire de BCDM= 6-2b
Aire de BCDM= -2b +6
J'ai essayé de détaillé le plus possible dans les calculs, je te souhaite bon courage pour la suite ^_^
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !