Répondre :
Bonsoir,
On va utiliser la réciproque du théorème des milieux dans un triangle.
Toute droite passant par le milieu de 2 côtés d'un triangle est parallèle au 3ème côté.
Dans le triangle ABC: IJ//AC
Dans le triangle ACD: KL//AC
Donc IJ//KL ( 2 droites parallèles à une même 3ème, sont parallèles entre-elles.
Même démonstration avec les triangles ABD et BCD.
a) le quadrilatère IJKL ayant ses côtés opposés parallèles est un parallélogramme.
b) si le quadrilatère ABCD est un rectangle, alors IK et JL sont les médiatrices du rectangle qui sont donc perpendiculaires.
Tout parallélogramme ayant ses diagonales perpendiculaires est un losange.
c) si le quadrilatère ABCD est un losange alors le parallélogramme IJKL est un rectangle (car les côtés consécutifs sont perpendiculaires et sont parallèles à des droites perpendiculaires )
d) le parallélogramme IJKL étant un rectangle losange est donc un carré.
On va utiliser la réciproque du théorème des milieux dans un triangle.
Toute droite passant par le milieu de 2 côtés d'un triangle est parallèle au 3ème côté.
Dans le triangle ABC: IJ//AC
Dans le triangle ACD: KL//AC
Donc IJ//KL ( 2 droites parallèles à une même 3ème, sont parallèles entre-elles.
Même démonstration avec les triangles ABD et BCD.
a) le quadrilatère IJKL ayant ses côtés opposés parallèles est un parallélogramme.
b) si le quadrilatère ABCD est un rectangle, alors IK et JL sont les médiatrices du rectangle qui sont donc perpendiculaires.
Tout parallélogramme ayant ses diagonales perpendiculaires est un losange.
c) si le quadrilatère ABCD est un losange alors le parallélogramme IJKL est un rectangle (car les côtés consécutifs sont perpendiculaires et sont parallèles à des droites perpendiculaires )
d) le parallélogramme IJKL étant un rectangle losange est donc un carré.
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !