👤

Bonsoir, j’ai un dm de maths à faire pour demain, ayant lu et relu mon cours, je comprends toujours absolument rien.

Exercice 1: Traduisez par une égalité chacune des phrases suivantes
A) l’image de 2 par la fonction f est égale à 6
B) -2 est l’image de 6 par la fonction g
C) les images de 4 et 7 par la fonction h sont nulles.
D) le point de coordonnées (-3;8) est un point de représentation graphique de la fonction j.

Exercice 2 :un rectangle à un côté de longueur 3 Cm. On note x la longueur en mètre du côté adjacent. On note P le périmètre du rectangle, exprimé en mètre et A son aire, exprimée en mètre carré :
1) traduisez par une formule le lien entre x et P
2) traduisez par une formule le lien entre x et A
3) quel est le périmètre du rectangle lorsque son aire est égale à 7,5 m carré ?

Exercice 3 :
Après avoir résolue les inéquations suivantes, écrivez l’ensemble des solutions à l´aide d’un intervalle:
1) x+4 (inférieur ou égale) 9
2) x+ 1 (strictement inférieur) 3x-5
3) 2x-7(supérieur ou égale) -12
4) 5x+20(strictement supérieur)6x+13



Merci beaucoup de votre aide, et bonne soirée!


Répondre :

Exercice 1

A) f(2) = 6
B) g(-2) = 6
C) h(4) = 0 et h(7) = 0
D) f(-3) = 8

Exercice 2

1) P = 2(x+3) 
ou P = 2x + 6
2) A = 3.x 

3) Calculons le perimeter si A =7.5 m²

A= 3x ; 7.5 = 3x et x = 2.5, donc le perimeter est de 2(2.5+3) = 11 m

Exercice 3

1) x+4 ≤ 9 →x≤9-4 et x≤5 {x|x≤5} ou ]-∞, 5] (je ne sais pas qu'elle notation vous avez appris)

2) x+1< 3x + 5; → 1-5 < 3x - x; → 2x>4  et x> 2→ ] 2, ∞[

3) 2x - 7≥ -12 → 2x ≥ -12+7; → x≥ -5/2 et x ∈ [-5/2, ∞[

4) 5x+2 > 6x + 13; → 5x - 6x > 13-2 → - x > 11 et x < -11 (lorsqu'on change le signe de "-" en "+" dans une égalité, le sens de ">" change en "<"
x< -11 → x ∈ ]-∞, -11[.
NB. Si vous avez appris d'autres formes pour l'intervalle, appliquez les