👤

Pouvais vous m’aider pour cette exercice s’il vous plaît !

Pouvais Vous Maider Pour Cette Exercice Sil Vous Plaît class=

Répondre :

Bonjour,

Les 2 triangles étant semblables, les droites BC et DE sont parallèles.

Tu dois appliquer le théorème de Thalès : " Des droites parallèles coupées par des sécantes déterminent des segments homologues proportionnels "

Cela donne :  AC / AE  =  AB / AD

                       AC / 7  =    3 / 4

Le produit " en croix  " donne  :   4 AC  =  21

                                       AC = 21 : 4  =  5,25.


J'espère avoir pu t'aider.
Bonjour,

Triangles semblables : Dire que deux triangles sont semblables signifie que les angles de l’un sont égaux aux angles de l’autre.
On dit aussi que les triangles sont de même forme.

Dans la configuration on a donc 

1) Le triangle ABC  semblable au triangle ADE car de même forme
2) On constate d'autre part que ABC est un triangle dont les mesures sont plus petites que le triangle ADE qui est donc plus grand...
3) Que les deux triangles sont de même nature : tous deux rectangles en A

On va donc devoir commencer par calculer le coefficient k
Quand deux triangles sont semblables, alors les côtés opposés aux angles égaux sont proportionnels.

ABC et ADE deux triangles semblables, alors :
k = AB/AD = AC / AE = BC/DE
k = AB/AD = 3/4
k = 0,75

Maintenant on va utiliser le coefficient k pour calculer la mesure de AC à partir de  la mesure AE..
AE = 7 cm
AC = 7 × 0,75
AC = 5,25

La mesure de AC est 5,25 cm

Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


Viz Asking: D'autres questions