Répondre :
1. La diminution de 10% de la population de la ville peut se tra
duire par le coefficient multiplicateur 0,9 soit
0,9
u
n
auquel il faut ajouter les 1200 nouveaux habitants soit 1,2 m
illiers.
On obtient donc bien
u
n
+
1
=
0,9
u
n
+
1,2
2. On rajoute dans la boucle Pour la relation de récurrence so
it
a
prend la valeur 0,9
a
+
1,2,;
a
prenant la valeur du terme de la suite cherchée.
3. a. 12
−
2
×
0,9
n
>
11,5
⇔−
2
×
0,9
n
>−
0,5
On multiplie l’inégalité par
−
1 donc on change le sens de l’inégalité soit
2
×
0,9
n
<
0,5
⇔
0,9
n
<
0,25.
La fonction logarithme étant strictement croissante, on ob
tient :
ln(0,9
n
)
<
ln(0,25)
⇔
n
ln(0,9)
<
ln(0,25).
ln(0,9) étant négatif, on aura
n
>
ln(0,25)
ln(0,9)
soit
n
>
13,15.
Les solutions de l’inéquation sont donc les entiers naturel
s supérieur à 14.
b. La population de Bellecité sera supérieur à 11,5 milliers
d’habitants à partir de l’année 2012
+
14 soit 2026.
Exercice 3
5 points
Commun à tous les candidats
Partie A
On considère la fonction
C
définie sur l’intervalle [5; 60] par :
C
(
x
)
=
e
0,1
x
+
20
x
.
1.
C
est dérivable comme quotient de fonctions dérivables sur [5
;60] et on a :
C
′
(
x
)
=
0,1e
0,1
x
×
x
−
(e
0,1
x
+
20)
×
1
x
2
=
0,1
x
e
0,1
x
−
e
0,1
x
−
20
x
2
2. On considère la fonction
f
définie sur [5; 60] par
f
(
x
)
=
0,1
x
e
0,1
x
−
e
0,1
x
−
20.
a.
f
est dérivable sur [5;60] comme produit de fonction dérivabl
e et
f
′
(
x
)
=
0,1e
0,1
x
+
0,1
x
×
0,1e
0,1
x
−
0,1e
0,1
x
=
0,1
x
e
0,1
x
.
Comme
x
∈
[5 ; 60] et qu’un exponentielle est toujours positif,
f
′
(
x
)
>
0 pour tout
x
∈
[5 ; 60] et par suite,
f
est croissante.
b. Comme
f
est continue, strictement croissante, que
f
(5)
≈−
20,82,
f
(60)
≈
1997,1 et 0
∈
[
f
(5) ;
f
(60)] ;
d’après le théorème des valeurs intermédiaires et la strict
e croissance, l’équation
f
(
x
)
=
0 aura une
unique solution
α
sur [5 ; 60].
c. En utilisant la calculatrice, comme
f
(25)
≈−
1,726 et
f
(26)
≈
1,5419, on a l’encadrement suivant : 25
6
α
6
26.
2
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !