👤

Bonjour j'aurai besoin d'aide pour le 3ème exercice de mon dm svp,la je bloque complètement.

Bonjour Jaurai Besoin Daide Pour Le 3ème Exercice De Mon Dm Svpla Je Bloque Complètement class=

Répondre :

Bonjour ;

Exercice n° 3 .

1)

a)

[tex]\forall x\in[0;+\infty[ : -1\le sin(x)\le 1 \Rightarrow - e^{-\frac{x}{ \sqrt{3} }}sin(x) \le f(x) \le e^{-\frac{x}{ \sqrt{3} }}sin(x) \\\\ \Rightarrow \underset{x\rightarrow +\infty }{lim} - e^{-\frac{x}{ \sqrt{3} }}sin(x) \le \underset{x\rightarrow +\infty }{lim} f(x) \le \underset{x\rightarrow +\infty }{lim} e^{-\frac{x}{ \sqrt{3} }}sin(x) [/tex]
[tex]\\\\ \Rightarrow 0 \le \underset{x\rightarrow +\infty }{lim} f(x) \le 0 \Rightarrow \underset{x\rightarrow +\infty }{lim} f(x) = 0 .[/tex]

b , c et d) Veuillez-voir le fichier ci-joint .

2)

a)

[tex]f'(x) = (sin(x)e^{- \frac{x}{ \sqrt{3} } })' = (sin(x))'e^{- \frac{x}{ \sqrt{3} } } + sin(x)(e^{- \frac{x}{ \sqrt{3} } })' \\\\ = cos(x)e^{- \frac{x}{ \sqrt{3} } } - \dfrac{1}{ \sqrt{3} }sin(x)e^{- \frac{x}{ \sqrt{3} } } = (cos(x)-\dfrac{1}{ \sqrt{3} }sin(x))e^{- \frac{x}{ \sqrt{3} } } ;[/tex]
[tex]\textit{donc f' est du signe de : } cos(x)-\dfrac{1}{ \sqrt{3} }sin(x) .[/tex]

b)

[tex]\textit{On a : } cox(x) - \dfrac{1}{ \sqrt{3} } sin(x) = \dfrac{ 2 }{ \sqrt{3} } (\dfrac{ \sqrt{3} }{2} cos(x)- \dfrac{1}{2} sin(x)) \\\\ = \dfrac{ 2 }{ \sqrt{3} } (cos(\dfrac{\pi}{6}) cos(x)- sin(\dfrac{\pi}{6}) sin(x)) = \dfrac{ 2 }{ \sqrt{3} } cos(x+\dfrac{\pi}{6}) .[/tex]



Voir l'image AYMANEMAYSAE
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


Viz Asking: D'autres questions