Répondre :
bonjou je vien de esoudre ton ecouation et la repnce est c
Bonjour,
1) On remarque : z' = (z - zA)/(z - zB)
a) z' ∈ R ⇒ arg(z') = 0 [π]
⇔ arg[(z - zA)/(z - zB)] = 0 [π]
⇔ arg(z - zA) - arg(z - zB) = 0 [π]
⇔ (AM,BM) = 0 [π]
⇒ M ∈ (AB) privée de B
b) z' ∈ I ⇒ arg(z') = π/2 [π]
⇒ (AM,BM) = π/2 [π]
⇒ M appartient au cercle de diamètre [AB] privé de B
c) |z'| = 1
⇔ |z - zA| = |z - zB|
⇒ AM = BM
⇒ M appartient à la médiatrice du segment [AB]
1) On remarque : z' = (z - zA)/(z - zB)
a) z' ∈ R ⇒ arg(z') = 0 [π]
⇔ arg[(z - zA)/(z - zB)] = 0 [π]
⇔ arg(z - zA) - arg(z - zB) = 0 [π]
⇔ (AM,BM) = 0 [π]
⇒ M ∈ (AB) privée de B
b) z' ∈ I ⇒ arg(z') = π/2 [π]
⇒ (AM,BM) = π/2 [π]
⇒ M appartient au cercle de diamètre [AB] privé de B
c) |z'| = 1
⇔ |z - zA| = |z - zB|
⇒ AM = BM
⇒ M appartient à la médiatrice du segment [AB]
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !