Répondre :
Bonjour,
1)
sin(π/3 + x) = sin(π/3)cos(x) + sin(x)cos(π/3) = √3/2 * cos(x) + 1/2 * sin(x)
sin(π/3 - x) = sin(π/3)cos(x) - sin(x)cos(π/3) = √3/2 * cos(x) - 1/2 * sin(x)
⇒ sin(π/3 + x) - sin(π/3 - x) = 1/2 * sin(x) + 1/2 * sin(x) = sin(x)
2)a) cos(x - π/4) = cos(x)cos(π/4) + sin(x)sin(π/4) = √2/2 * [cos(x) + sin(x)]
sin(x - π/4) = sin(x)cos(π/4) - sin(π/4)cos(x) = √2/2 * [sin(x) - cos(x)]
b)
E1 : cos(x) + sin(x) = √2
⇔ 2/√2 * cos(x - π/4) = √2
⇔ cos(x - π/4) = 1
⇔ x - π/4 = 0 + k2π
⇔ x = π/4 + k2π
E2 : cos(x) - sin(x) = √2
⇔ -2/√2 * sin(x - π/4) = √2
⇔ sin(x - π/4) = -1
⇔ x - π/4 = -π/2 + k2π
⇔ x = -π/4 + k2π
1)
sin(π/3 + x) = sin(π/3)cos(x) + sin(x)cos(π/3) = √3/2 * cos(x) + 1/2 * sin(x)
sin(π/3 - x) = sin(π/3)cos(x) - sin(x)cos(π/3) = √3/2 * cos(x) - 1/2 * sin(x)
⇒ sin(π/3 + x) - sin(π/3 - x) = 1/2 * sin(x) + 1/2 * sin(x) = sin(x)
2)a) cos(x - π/4) = cos(x)cos(π/4) + sin(x)sin(π/4) = √2/2 * [cos(x) + sin(x)]
sin(x - π/4) = sin(x)cos(π/4) - sin(π/4)cos(x) = √2/2 * [sin(x) - cos(x)]
b)
E1 : cos(x) + sin(x) = √2
⇔ 2/√2 * cos(x - π/4) = √2
⇔ cos(x - π/4) = 1
⇔ x - π/4 = 0 + k2π
⇔ x = π/4 + k2π
E2 : cos(x) - sin(x) = √2
⇔ -2/√2 * sin(x - π/4) = √2
⇔ sin(x - π/4) = -1
⇔ x - π/4 = -π/2 + k2π
⇔ x = -π/4 + k2π
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !