Bonjour,
f
x(4-2x)≤(3x-1)(2-x)
x(4-2x)=2x(2-x)
2x(2-x)≤(3x-1)(2-x)
0≤[(3x-1)(2-x)-2x(2-x)]
0≤ (2-x)((3x-1)-2x)
0≤(2-x)(3x-1-2x)
0≤(2-x)(x-1)
x -∞ 1 2 +∞
2-x + + 0 -
x-1 - 0 + +
(2-x)(x-1) - 0 + 0 -
(2-x)(x-1)≥0 x ∈ [1:2]
d'où
x(4-2x)≤(3x-1)(2-x) x ∈ [1;2]
g)
16-x²>(7x+2)(4-x)
16-x²=4²-x²=(4+x)(4-x)
(4+x)(4-x)>(7x+2)(4-x)
0>[(7x+2)(4-x)]-[(4+x)(4-x)
0> (4-x)[(7x+2)-(4+x)]
0>(4-x)(7x+2-4-x)
0>(4-x)(6x-2)
6x-2=0 6x=2 x=2/6 x=1/3
x -∞ 1/3 4 +∞
4-x + + 0 -
6x-2 - 0 + +
(4-x)((6x-2) - 0 + 0 -
(4-x)(6x-2)<0 x ∈]-∞;1/3[ ∪ ]4:+∞[
16-x²>(7x-2)(4-x) x ∈ ]-∞;1/3[ ∪ ]4;+∞[