Répondre :
Bonjour,
Nous allons tout d'abord effectuer ce programme de calcul que propose le magicien, qui est le suivant :
1) Multiplier votre jour de naissance par 25
2) Ajouter 30 au résultat
3) Multiplier par 80
4) Retrancher le double de votre mois de naissance
5) Retrancher 2400
Admettons que nous somme nés le 26/05 (aujourd'hui) :
1) [tex]26\times25=650[/tex]
2) [tex]650+30=680[/tex]
3) [tex]680\times80=54\ 400[/tex]
4) [tex]54\ 400-2\times5=54\ 390[/tex]
5) [tex]54\ 390-2\ 400=51\ 990[/tex]
Maintenant écrivons une expression littérale qui représente la situation.
Posons [tex]j[/tex] le jour et [tex]m[/tex] le mois de naissance.
Le spectateur est né le [tex]j/m[/tex]
Pour écrire cette expression, il suffit d'exécuter le programme avec [tex]j[/tex] et [tex]m[/tex]
1) [tex]25j[/tex]
2) [tex]25j+30[/tex]
3) [tex](25j+30)\times80=2\ 000j+2\ 400[/tex]
4) [tex]2\ 000j+2\ 400-2m[/tex]
5) [tex]2\ 000j+2\ 400-2m-2\ 400=2\ 000j-2m[/tex]
Maintenant que nous avons l'expression littérale du programme, nous pouvons déterminer le jour et le mois de naissance de ce spectateur.
[tex]2\ 000j+2m=9\ 994[/tex]
Comme il y a maximum 31 jours dans un mois, [tex]j[/tex] va être compris entre 1 et 31
Même raisonnement pour [tex]m[/tex], il y a 12 mois dans une année, donc [tex]m[/tex] va être compris entre 1 et 12.
Mais si [tex]2\ 000j-2m=9\ 994[/tex] alors [tex]2\ 000j[/tex] doit être proche de 10 000 voire même égal car ensuite nous devons retrancher [tex]2m[/tex] qui au maximum sera égal à 24.
En effet : [tex]9\ 994=10\ 000-6[/tex]
Ce qui veut dire que : [tex]2\ 000j=10\ 000[/tex] et [tex]2m=6[/tex]
[tex]j=\dfrac{10\ 000}{2\ 000}=5[/tex]
[tex]m=\dfrac{6}{2}=3[/tex]
Le spectateur est alors né le 05/03 soit le 5 Mars
Nous allons tout d'abord effectuer ce programme de calcul que propose le magicien, qui est le suivant :
1) Multiplier votre jour de naissance par 25
2) Ajouter 30 au résultat
3) Multiplier par 80
4) Retrancher le double de votre mois de naissance
5) Retrancher 2400
Admettons que nous somme nés le 26/05 (aujourd'hui) :
1) [tex]26\times25=650[/tex]
2) [tex]650+30=680[/tex]
3) [tex]680\times80=54\ 400[/tex]
4) [tex]54\ 400-2\times5=54\ 390[/tex]
5) [tex]54\ 390-2\ 400=51\ 990[/tex]
Maintenant écrivons une expression littérale qui représente la situation.
Posons [tex]j[/tex] le jour et [tex]m[/tex] le mois de naissance.
Le spectateur est né le [tex]j/m[/tex]
Pour écrire cette expression, il suffit d'exécuter le programme avec [tex]j[/tex] et [tex]m[/tex]
1) [tex]25j[/tex]
2) [tex]25j+30[/tex]
3) [tex](25j+30)\times80=2\ 000j+2\ 400[/tex]
4) [tex]2\ 000j+2\ 400-2m[/tex]
5) [tex]2\ 000j+2\ 400-2m-2\ 400=2\ 000j-2m[/tex]
Maintenant que nous avons l'expression littérale du programme, nous pouvons déterminer le jour et le mois de naissance de ce spectateur.
[tex]2\ 000j+2m=9\ 994[/tex]
Comme il y a maximum 31 jours dans un mois, [tex]j[/tex] va être compris entre 1 et 31
Même raisonnement pour [tex]m[/tex], il y a 12 mois dans une année, donc [tex]m[/tex] va être compris entre 1 et 12.
Mais si [tex]2\ 000j-2m=9\ 994[/tex] alors [tex]2\ 000j[/tex] doit être proche de 10 000 voire même égal car ensuite nous devons retrancher [tex]2m[/tex] qui au maximum sera égal à 24.
En effet : [tex]9\ 994=10\ 000-6[/tex]
Ce qui veut dire que : [tex]2\ 000j=10\ 000[/tex] et [tex]2m=6[/tex]
[tex]j=\dfrac{10\ 000}{2\ 000}=5[/tex]
[tex]m=\dfrac{6}{2}=3[/tex]
Le spectateur est alors né le 05/03 soit le 5 Mars
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !