Répondre :
1) C( 0 ;3 ) D(-2 ;1) G(1; -2) H(3;0 )
vecteur CD ( -2 ; -2) = vecteur HG( -2 ; -2) donc CDGH parallelogramme
2)a (h-c)/(d-c)= (3-3i ) / (-2 -2i ) = (3-3i)(-1+i) /(-2-2i)(-1+i)
= (- 3+3i +3i +3) /( 2 -2i +2i +2) = 6i/ 4 = 3i/2
forme trigonométrique ( 3/2 ; pi/2)
b) le module est 3/2 donc géométriquement HC= 3/2 *DC
un argument est pi/2 donc l'angle HCD est un angle droit
c)CDHG est un rectangle
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !