👤

Bonjour j'aurais besoin d'aide pour effectuer ses exercices et je me sert d'exemple pour pouvoir faire les autres
Merci d'avance de m'aider.
(Exso terminale )


Bonjour Jaurais Besoin Daide Pour Effectuer Ses Exercices Et Je Me Sert Dexemple Pour Pouvoir Faire Les Autres Merci Davance De Maider Exso Terminale class=

Répondre :

Réponse :

Explications étape par étape

La suite Un est une suite explicite (fonction de n). Donc  elle se comporte comme la fonction f(x) =x³-2x+3 sur [0;+oo[

La dérivée f(x)=3x²-2 s'annule pour x=+V(2/3)et f(x) est croissante sur ](2/3);+oo[ la suite Un est donc croissante sur [1;+oo[.

2) la limite de Un qd  n tend vers +oo est la même que celle de f(x) quand x tend vers+oo; soit +oo (limite du terme de plus haut dégré  donc limite de x³).

3) Algorithme (je ne connais pas).

Par contre 10^9=1000³

U1000<10^9 et U1001>10^9 Comme la suite est croissante,  à partir de n=1001 , Un >10^9