👤

L'entreprise MegaJeu produit des jeux qu'elle vend 30 € pièces. On suppose qu'elle parvient à vendre la totalité des jeux produit. Pour X je produis le coût de la fabrication en euros est donné par l'expression C(x)= 2x^2 - 30 x + 300.
On note R(x) la recette perçue pour X jeux vendus et B(x) le bénéfice réalisé par la vente de X jeux.
L'entreprise fabrique au maximum 100 jeux.
1) Exprimer R(x) en fonction de x
2) En deduire que B(x)=-2x^2+60x-300
3) Déterminer le bénéfice maximal et pour combien de jeux il est réalisé.
Svp aidez moi cest pressant et je n'ai pas du tout le temps ce week end ( ca fait deja 3 jours que je suis sur l exo.. jai passé 3h en tout je n y arrive vraiment pas...) merci beaucoup..!


Répondre :

Réponse :

bonjour

Explications étape par étape

1) R(x)

elle vend 30 € un objet

pour x objets 30x

R(x)=30x

2) B(x)

le bénéfice est égal à la rectte moins les couts de fabrication

B(x)=R(x)-C(x)

B(x)=30x-( 2x²-30x+300)

B(x)=30x-2x²+30x-300

B(x)=-2x²+60x-300

Bénéfice maximale

B(x) est un polynome du second degré

ax²+bx+c

avec a=-2

a<0 il existe un maximum

-2<0 il existe un maximum

(α;β)

avec α=-b/2a

et β=B(α)

α=-60/-4

α=15

il faut vendre 15 objets

β=B(15)

β=-2(15²)+60(15)-300

β=-2(225)+900-300

β=-450+900-300

β=150

le bénéfice est maximal pour 15 objets et se monte à 150 €

Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


Viz Asking: D'autres questions