👤

Bonjour j'ai un DM mais j'arrive pas a répondre a ces questions la:

Il s'agit de démontrer que,si la somme des chiffres d'un nombre N est divisible par 3, alors N est divisible par 3 .



c:on suppose donc que la somme des chiffres de N est un multiple de 3,c'est-à-dire que D+U=3×K,où K est un nombre entier.
Démontre que N est un multiple de 3
(indication: Tu pourras écrire que 10D+U=9D+D+U...)

merci d'avance car je ne comprend vraiment rien


Répondre :

Réponse :

bonjour

Explications étape par étape

soit un nombre de 2 chiffres

c s'ecrit du

formé de

d chiffre des dizaines

et

u chiffres des unités

c=10d+u

on sait que

d+u est divisible par 3

(d+u)/3  est un entier

9d est divisible par 3

(9d/3)+(d+u)/3 est un entier

(9d+d+u)/3 est un enteir

(10d+u)/3 est un entier

10d+u est divisible par 3

c divisible par 3