👤

Bonjour, voilà j'ai vraiment besoin d'aide pour ce devoir que je dois rendre après les vacances


Dans un repère orthonormé, soit les points A(-1 ; 0), B(2 ; 1) et D(0 ; 4).


1/ Faire une figure qui sera complétée au fur et à mesure.


Les résultats aux questions suivantes seront obtenus par le calcul.


2/ Déterminer une équation de la droite (AD).


3/ Déterminer les coordonnées de I milieu de [AB].


4/ Déterminer une équation de la droite d parallèle à (DI) et passant par B.


5/ Déterminer les coordonnées du point d'intersection C des droites d et (AD).


6/ Montrer que D est le milieu de [AC].


Merci beaucoup pour votre aide


Répondre :

Réponse :

2) déterminer une équation de la droite (AD)

   y = a x + b

a : coefficient directeur = Δy/Δx = (yd - ya)/(xd - xa) = (4 - 0)/(0+1) = 4

b ; l'ordonnée à l'origine

    y = 4 x + b  

    4 = 4*0 + b

l'équation de (AD) est : y = 4 x + 4

2) déterminer les coordonnées de I milieu de (AB)

I(x ; y) milieu de (AB) :  x = (-1+2)/2 = 1/2

                                     y = (1+0)/2 = 1/2

les coordonnées de I(1/2 ; 1/2)

4) déterminer une équation de la droite d // (DI) et passant par B

le coefficient directeur de (DI) est :

 a' = (yi - yd)/(xi-xd) = (1/2 - 4)/(1/2 - 0) = -7/2/1/2 = - 7

d // (DI) ⇒ a = a' = - 7

y = - 7 x + b  ;  d passe B(2 ; 1)  donc  

1 = - 7*2 + b ⇒ b = 15

L'équation de d est : y = - 7 x + 15

5) déterminer les coordonnées du point d'intersection C des droites d et (AD)

d :   y = - 7 x + 15

(AD) : y = 4 x + 4

- 7 x + 15 = 4 x + 4 ⇔ 11 x = 11 ⇒ x = 1  ⇒ y = 8

les coordonnées  C(1 ; 8)

6) montrer que D est le milieu de (AC)

on a  D(0 ; 4)

soit E(x ; y) milieu de (AC) : x = (1 -1)/2 = 0

                                            y = (8 -0)/2 = 4

E(0 ; 4) ⇒ or D(0; 4) = E(0 ; 4) ⇒ donc D est le milieu de (AC)

 

Explications étape par étape

Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


Viz Asking: D'autres questions