on sait que log(x)= ln(x)/ln(10)
Donc log(a²√b/10)= ln(a²√b/10)/ln(10)
= [ln(a²√b)-ln(10)]/ln(10)
= ln(a²√b)/ln(10)-ln(10)/ln(10)
=( ln(a²)+ln(√b))/ln(10)-1
= (2ln(a)+1/2ln(b))/ln(10) -1
= 2×ln(a)/ln(10)+1/2×ln(b)/ln(10)- 1
or x=loga et y=logb donc log(a²√b/10)=2x+1/2y-1
Bon courage !