👤

Bonjour, quelqu’un pourrait m'aider svp . niveau 3eme

ABC est un triangle tel que : AB = 5 cm , BC =7,6 cm et AC = 9,2 cm on a construit ce triangle avec GeoGebra, puis on a placé un point P sur le segment [AC] on a tracé les triangles ABP et BPC et on a affiché le périmètre de chaque triangle

Périmètre de ABP : 13,16
Périmètre de BPC : 17,17

Où faut-il placer le point P pour que les deux triangles ABP et BPC aient le même périmètre



Répondre :

bonjour,

on appelle x la distance AP

on connait les P, des longueurs

triangle ABP

AB+BP+X = 13,16
5+BP+x = 13,16

triangle BPC

BC+BP+PC = 17,17
7,6+BP+(9,2-x) = 17,17

5+BP+x = 13,16
7,6+BP+(9,2-x) = 17,17

on va substituer BP :
BP = -5-x+13,16 et le remplacer ds l'autre équation :
7,6-5-x+13,16+9,2-x = 17,17
-2x+24,96 = 17,17
-2x =17,17-24,96
2x  =7,79
x =3,895cm

si AP = 3,895cm les 2 P sont égaux
il faut placer P à 3,895cm de A