👤

a(x)=cos3x+1/2sin2x-2cos^3x+2cosx
1- calcul A(-pi/6) et a(pi/4)
2-démontrez que cos3x=(1-4sin^2x)cosx
et a(x)=(-2sin^2x+SINX+1)cosx
svp


Répondre :

Bonjour,

A(x) = cos(3x) + sin(2x)/2 - 2cos³(x) + 2cos(x)

1) A(-π/6) = cos(-3π/6) + sin(-2π/6)/2 - 2cos³(-π/6) + 2cos(-π/6)

= cos(-π/2) + sin(-π/3)/2 - 2cos³(-π/6) + 2cos(-π/6)

cos(-π/2) = 0
sin(-π/3) = -√(3)/2
cos(-π/6) = √(3)/2

⇒ A(-π/6) = -√(3)/4 - 2(√(3)/2)³+ √(3)

= -√(3)/4 - 3√(3)/4 + 4√(3)/4

= 0

A(π/4) = cos(3π/4) + sin(2π/4)/2 - 2cos³(π/4) + 2cos(π/4)

cos(3π/4) = -√(2)/2
sin(2π/4) = sin(π/2) = 1
cos(π/4) = √(2)/2

⇒ A(π/4) = -√(2)/2 + 1/2 - 2(√(2)/2)³ + √(2)

= √(2)/2 + 1/2 - √(2)/2

= 1/2

2) cos(3x) = cos(2x + x)

= cos(2x)cos(x) - sin(2x)sin(x)

= [cos²(x) - sin²(x)]cos(x) - [sin(x)cos(x) + sin(x)cos(x)]sin(x)

= cos(x)(1 - 2sin²x) - 2sin²(x)cos(x)

= [1 - 4sin²(x)]cos(x)

A(x) = cos(3x) + sin(2x)/2 - 2cos³(x) + 2cos(x)

= [1 - 4sin²(x)]cos(x) + 2sin(x)cos(x)/2 - 2[1 - sin²(x)]cos(x) + 2cos(x)

= cos(x)[1 - 4sin²(x) + sin(x) -2 + 2sin²(x) + 2]

= cos(x)[-2sin²(x) + sin(x) + 1]

On retrouve :

A(-π/6) = √(3)/2[-2x1/4 - 1/2 + 1] = 0
A(π/4) = √(2)/2[-2x2/4 + √(2)/2 + 1] = 1/2