👤

Bonjours pouriez vous m aider car je ne comprend cette exercice merci d avance

1. Choisir 3 nombres entier consecutifs. Faire le produit du premier et du troisieme. Calculer le carre du deuxieme et soustraire 1 au resultat 2.recommencer avec trois autres nombres entier consecutifs.Quelle conjecture peut on faire? 3.Demontrer la conjecture en appelant n le premier des trois nombre choisis


Répondre :

bonjour,

1. Choisir 3 nombres entier consecutifs : 2,3,4

Faire le produit du premier et du troisiem: 2*4 =8
 Calculer le carre du deuxieme  : 3² = 9
et soustraire 1 au resultat 2 : 9-1 = 8

recommencer avec trois autres nombres entier consecutifs; choisis 3 nombres et fait

Quelle conjecture peut on faire? il semblerait qu ele résultat soit...  tu reponds qd tu auras fait  la question précedente

3.Demontrer la conjecture en appelant n le premier des trois nombre choisis
soit n, (n+1), (n+2) trois entiers consécutifs


Faire le produit du premier et du troisieme: n(n+2) = n²+2n
 Calculer le carre du deuxieme  : (n+1)² = n²+2n+1
et soustraire 1 au resultat 2 : n²+2n+
1-1 = n²+2n

⇒on retrouve tjs comme resultat le carré du 1er augmenté du double du 1er
pour 2,3,4 on trouve 8 : 2²+2*2 = 4+4 = 8




Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


Viz Asking: D'autres questions