👤

Hello! Je bloque sur les deux dernieres questions de mon exo de maths :/
Est-ce que quelqu'un pourrait m'aider?
Factorisez lorsque cela est possible:
C(t)=t^2+2t+1+(t+1)(3t-5)
D(t)=(2t+1)^2+4t^2-1


Répondre :

bonjour


C(t) = t² + 2 t + 1 + ( t + 1) ( 3 t - 5)
C(t) = ( t + 1)² + ( t + 1) ( 3 t - 5)
C(t= = ( t + 1) ( t + 1 + 3 t - 5)
C(t) = ( t + 1) ( 4 t - 4 )

d(t) = ( 2 t + 1)² + 4 t² - 1 
d(t) = ( 2 t + 1)² + ( 2 t + 1) ( 2 t - 1)
d'(t) = ( 2 t + 1) ( 2 t + 1 + 2 t - 1)
d(t) = ( 2 t + 1) ( 4 t ) 
Bonjour,

[tex]C(t)=t^2+2t+1+(t+1)(3t-5)\\\rightarrow a^2+2ab+b^2 = (a+b)^2\\C(t) = \left((t)^2+2\times t\times 1 + (1)^2)\right ) + (t+1)(3t-5)\\C(t) = (t+1)^2+(t+1)(3t-5)\\C(t) = (t+1)(t+1+3t-5)\\C(t) = (t+1)(4t-4)\\C(t) = (t+1)\times4(t-1)\\C(t) = 4(t+1)(t-1)\\\\D(t)=(2t+1)^2+4t^2-1\\\rightarrow a^2-b^2 = (a-b)(a+b)\\\\D(t) = (2t+1)^2+(2t)^2-(1)^2\\D(t) = (2t+1)^2+(2t-1)(2t+1)\\D(t) = (2t+1)(2t+1+2t-1)\\D(t) = (2t+1)\times4t\\D(t) = 4t(2t+1)[/tex]