Répondre :
une fréquence en statistiques peut s' exprimer en nombre décimal ou en % ( 0,345 = 34,5 % par exemple ! ) .
Exemple de calcul d' une moyenne en statistiques : dans une classe de 25 Elèves, on a 4 élèves de 14 ans ; 16 de 15 ans et 5 de 16 ans .
Les fréquences sont donc : 4/25 = 0,16 = 16 % de jeunes ; 16/25 = 0,64 = 64 % de "normaux" ; et 5/25 = 0,2o = 20 % de "redoublants" . TOTAL = 16 % + 64 % + 20 % = 100 % à toujours vérifier !
Age moyen des Elèves de la classe = (14 x 16 + 15 x 64 + 16 x 20)/100 = (224 + 960 + 320)/100 = 1504/100 = 15,04 ans ≈ 15 ans et 2 semaines .Pourquoi "2 semaines" ? car 0,04 an x 52 semaines/an ≈ 2 semaines !
Conclusion : pour calculer la moyenne, j' ai utilisé tous les % ( 16 ; 64 ; 20 ; et le TOTAL 100 ), mais on aurait pu utiliser 0,16 ; 0,64 ; 0,2o et le TOTAL 1 .En espérant avoir éclairci tes idées ...
Exemple de calcul d' une moyenne en statistiques : dans une classe de 25 Elèves, on a 4 élèves de 14 ans ; 16 de 15 ans et 5 de 16 ans .
Les fréquences sont donc : 4/25 = 0,16 = 16 % de jeunes ; 16/25 = 0,64 = 64 % de "normaux" ; et 5/25 = 0,2o = 20 % de "redoublants" . TOTAL = 16 % + 64 % + 20 % = 100 % à toujours vérifier !
Age moyen des Elèves de la classe = (14 x 16 + 15 x 64 + 16 x 20)/100 = (224 + 960 + 320)/100 = 1504/100 = 15,04 ans ≈ 15 ans et 2 semaines .Pourquoi "2 semaines" ? car 0,04 an x 52 semaines/an ≈ 2 semaines !
Conclusion : pour calculer la moyenne, j' ai utilisé tous les % ( 16 ; 64 ; 20 ; et le TOTAL 100 ), mais on aurait pu utiliser 0,16 ; 0,64 ; 0,2o et le TOTAL 1 .En espérant avoir éclairci tes idées ...
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !