Répondre :
A = cos(π/6 + x) + cos(π/6 - x) = cos(π/6)cos(x) - sin(π/6)sinx + cos(π/6)cos(x) - sin(π/6)sinx
A = √3/2 cos (x) - (1/2)sinx + √3/2 cos (x) + 1/2)sin (x) = √3 cos (x)
B = sin(5π/6 + x) - sin(7π/6 + x) = sin(5π/6)cos(x) + cos(5π/6)sin(x) - (sin(7π/6)cos(x) + cos(7π/6)sin (x)
B = 1/2) cos (x) - √3/2 sin (x) - (-1/2 cos (x) - √3/2 sin (x) = cos (x)
C = tan (x + π/4) x tan (x - π/4)
tan(x + π/4) = tan (x) + tan (π/4)]/(1 - tan (x)tan(π/4) = tan (x) + 1]/(1 - tan (x))
tan (x - π/4) = tan (x) - tan (π/4)]/(1 + tan (x)tan(π/4)) = tan (x) - 1]/(1 + tan (x)
C = tan (x) + 1]/(1 - tan (x)] x [tan (x) - 1]/(1 + tan (x) = - 1
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !