Répondre :
Salut ,
1) Les coordonnées sont :
A(4;5) B(2;13) C(6;14) D(8;6)
2) dimensions :
AB^2 = (xB - xA)^2 + (yB - yA)^2
AB^2 = (2 - 4)^2 + (13 - 5)^2
AB^2 = (-2)^2 + 8^2
AB^2 = 4 + 64
AB^2 = 68
AB = V68 = V(4 x 17) = 2V17
BC^2 = (xC - xB)^2 + (yC - yB)^2
BC^2 = (6 - 2)^2 + (14 - 13)^2
BC^2 = (4)^2 + 1^2
BC^2 = 16 + 1
BC^2 = 17
BC = V17
CD^2 = (xD - xC)^2 + (yD - yC)^2
CD^2 = (8 - 6)^2 + (6 - 14)^2
CD^2 = (2)^2 + (-8)^2
CD^2 = 4 + 64
CD^2 = 68
CD = V68 = V(4 x 17) = 2V17
DA^2 = (xA - xD)^2 + (yA - yD)^2
DA^2 = (4 - 8)^2 + (5 - 6)^2
DA^2 = (-4)^2 + (-1)^2
DA^2 = 16 + 1
DA^2 = 17
DA = V17
3) vérifier qu’il est rectangulaire :
On a DA = BC et AB = CD
ensuite, pour prouver que c'est un rectangle, on peut calculer les diagonales (comme un rectangle à ses diagonales de mêmes longueurs)
AC^2 = AB^2 + BC^2 = 68 + 17 = 85
DB^2 = DA^2 + AB^2 = 17 + 68 = 85
Les diagonales du quadrilataire ABCD sont bien égales alors ABCD est un rectangle.
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !