👤

Bonjour, est-ce possible de m'aider pour quelques exercices svp


1) Pour quelles valeurs de x un triangle avec les côtés de longueurs 5, 5 et x possède un angle obtus ?


A: [tex]0 \ \textless \ x \leq 5\sqrt{2}[/tex]

B: [tex]5 \ \textless \ x \leq 5\sqrt{2}[/tex]

C: 5 < x < 10

D: O < x < 10

E: [tex]5\sqrt{2} \ \textless \ x \ \textless \ 10[/tex]


2) Un rectangle a une paire de 20 et un périmètre de 22. Quelle est la longueur de chacune de ses diagonales ?


a) [tex]4\sqrt{5}[/tex]

b) 10

c) [tex]\sqrt{29}[/tex]

d) [tex]2\sqrt{26}[/tex]

e) 9


3) Un train voyageurs de 200m de long avancant à 80km/h rencontre un train de marchandise de 2km de long avancant dans la direction opposée à 20 km/h. Quelle est la distance, mesurée le long d'une des voies, entre le point où les avants des trains se croisent et celui où leurs arrières se croisent ?


a) 1,28 km

b) 1,4 km

c) 1,56 km

d) 1,8 km

e) 1,88 km


Répondre :

Réponse :

1) pour quelle valeur de x un triangle avec les côtés de longueur 5 ; 5 et x possède un angle obtus

soit ABC triangle isocèle; on suppose qu'il est rectangle en A

donc  x² = 5²+5² = 2 x 5² ⇒ x = 5√2  

pour que l'angle soit obtus  c'est   90° + α,  il faut augmenter x  de Δx

la réponse est C   ⇒   5  < x  < 10

2) un rectangle a une aire de 20 et un périmètre de 22. Quelle est la longueur de chacune de ses diagonales

soit  x : longueur

       y : largeur

on écrit :   A = x * y = 20

                 p = 2(x + y) = 22 ⇒ x + y = 11 ⇒ x = 11 - y

(11 - y)y = 20 ⇔ y² - 11 y + 20 = 0

Δ = 121 - 80 = 41 ⇒√41 ≈ 6.4

y1 = 11 + 6.4)/2 =  8.7 ⇒ x = 11 - 8.7 = 2.3 ⇒ d = √2.3²+ 8.7² ≈ 8.9

y2 = 11 - 6.4)/2 =  2.3  ⇒ x = 11 - 2.3 = 8.7 ⇒ d ≈ 8.9

la réponse est a)  4√5

Explications étape par étape