👤

Bonjour pouvez-vous m'aider svp merci

Exercice 1 : développer

1) ( x + 6 ) ( y + 4 ) =
2) ( 3 x + 1 ) ( x + 5 ) =
3) ( 5 - x ) ( - 3 - x ) =

Exercice 2 : développer puis réduire si possible

A = ( x + 3 ) ( x - 2 )
A =
A =

C = ( a - 5 ) ( 2a - 7 )
C =
C=

Merci encore


Répondre :

bonjour,

*= multiplier

Exercice 1 : développer

1) ( x + 6 ) ( y + 4 ) = 
   x*y + x*4 + 6*y + 6*4 =
   xy+4x+6y+24

2) ( 3 x + 1 ) ( x + 5 ) =
   3x*x + 3x*5 + 1*x + 1*5 =
   ..................

3) ( 5 - x ) ( - 3 - x ) =
   5*-3 + 5*-x  -x*-3 -x*-x =
   ..........

Exercice 2 : développer puis réduire si possible

A = ( x + 3 ) ( x - 2 )
A = x*x +x*-2 + 3*x + 3*-2
A = ...........

C = ( a - 5 ) ( 2a - 7 )
C =
C=


fais, envoie,on corrige
1) ( x + 6 ) ( y + 4 ) = xy + 4x + 6y + 24

2) ( 3x + 1 ) ( x + 5 ) = 3[tex] x^{2} [/tex] + 15x + x + 5
                                 = 3[tex] x^{2} [/tex] + 16x + 5

3) ( 5 - x ) ( -3 - x ) = -15 - 5x + 3x + [tex] x^{2} [/tex]
                              = [tex] x^{2} [/tex] - 2x - 15

Exercice 2 :

A = ( x + 3 ) ( x - 2 )
A = [tex] x^{2} [/tex] - 2x + 3x - 6
A = [tex] x^{2} [/tex] + x - 6

C = ( a - 5 ) ( 2a - 7 )
C = 2[tex] a^{2} [/tex] - 7a - 10a + 35
C = 2[tex] a^{2} [/tex] - 17a + 35