Bonjour,
Je te propose cette solution car je n'en ai pas trouvé d'autre.
----------
La piscine est formée de deux demis-cercles de diamètre 3,75 m et d'un rectangle central.
En volume cela donne : un cylindre et un pavé droit central.
Définitions des volumes :
Volume d'un cylindre = π×R²×hauteur
Un pavé droit = Longueur ×largeur ×hauteur
--------------------------
Calculs :
Volume des deux extrémités de la piscine formée de demis-cercles, formant à eux deux un cylindre de 3,75 m de diamètre et 1,05 de hauteur
V = 3,14 × 1,875² × 1,05
V = 11,59101563
Le volume des deux parties arrondies de la piscine est de ≈ 11,59102 m³
Longueur = 6,10 - 2 fois le rayon
L = 6,10 - 3,75 = 2,35 m
Volume du pavé droit central : 2,35 × 3,75 × 1,05 = 9,253125
Volume total de cette piscine : 9,25313 + 11,59102
Le volume de la piscine est ≈ 20,84415 m³
-------------------------
Conversion en litres : 20,84415 m³ ≈ 20844,15 dm³ ou litres
Temps pour remplir cette piscine : 1 litre pour 6 secondes
1 heure = 3600 secondes
20844,15 ÷ 3600 = 5,79 h
0,79× 60 = 47,4 minutes
0,4 × 60 = 24 secondes
Le temps nécessaire pour remplir la piscine est de 5h 47 min 24 sec
Réponse à la question posée :
Une journée comprenant 24 heures, alors Marie ne pourra pas s'absenter pendant autant de temps puisque la piscine sera remplie au bout de 5h 47min 24sec.