Répondre :
Déjà, comme c'est des droites, elles vont correspondre à des fonctions affines du type y = ax + b
On va donc mettre les deux équations sous cette forme.
Pour (d1) :
[tex]5 - 9x - my = 0 \\ 5 - 9x = my \\ y =\frac{5}{m}-\frac{9}{m} x[/tex]
Pour (d2) :
[tex] - 6 + mx =- 7y \\ y =-\frac{m}{7}x+\frac{6}{7}[/tex]
Pour que les droites soient parallèles, il faut que leurs coefficients directeurs soient égaux :
[tex]-\frac{9}{m}=-\frac{m}{7}\\\frac{9}{m}=\frac{m}{7}\\{m}^{2}=9\times7 \\{m}^{2}=63\\m=\sqrt{63}ou-\sqrt{63}\\m=3\sqrt{7}ou-3 \sqrt{7}[/tex]
Donc S = {[tex]-3\sqrt{7}[/tex];[tex]3\sqrt{7}[/tex]}
Merci d'avoir visité notre site Web, qui traite d'environ Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter pour toute question ou demande d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !