👤

Bonjour, s'il vous plait pouvez vous me faire cet exercice car je ne comprend absolument pas.
Soit une fonction f définie sur R par : f(x) = (2 − x)(3 − 5x) − 4(x − 2)²
1. Écrire et transformer :
1. a. Factoriser f(x).
1. b. Montrer que pour tout réel x : f(x) = x² + 3x − 10
1. c. Montrer que pour tout réel x , f(x) =
2. Choisir l’expression la plus adaptée pour répondre aux questions suivantes :
2. a. Calculer f ( ) et f (−1).
2. b. Résoudre dans R les équations :
2. b. 1. (E2) : f(x) = 0 ;
2. b. 2. (E3) : f(x) =
2. b. 3. (E4) : f(x) = 2x² − 10. 2.
c. Déterminer le minimum de la fonction f sur R et le réel pour lequel il est atteint.


Répondre :

bonjour,

soit f(x) = (2 − x) (3 − 5x) 4 (x − 2)²

1) a)

factoriser :

il faut donc trouver un facteur commun à droite et à gauche du " - "

(2-x) = - (x-2)

donc soit f(x) = - (x-2) (3-5x) - 4 (x-2) (x-2)

=> f(x) = (x-2) [- (3-5x) - 4 (x-2)]

=> f(x) = (x-2) (-3+5x-4x+8)

=> f(x) = (x-2) (x+5)

1) b

f(x) = (x-2) (x+5) = x² +5x -2x -10 = x² + 3x - 10

1) c

? énoncé incomplet

2)

a) calculer f(?)  - erreur énoncé..

calculer f(-1) = (-1+2) (-1+5) = 1x4 = 4

f(x) = 0

=> (x-2) (x+5) = 0

soit x-2 = 0 => x = 2

soit x+5 = 0 => x = -5

E(3) - énoncé incomplet.. :(

f(x) = 2x² - 10 - incomplet .. :(